NAVS-3000 Underwater Integrated Navigation System INS/DVL/DEPTH

1. Overview

NAVS-3000 is a new generation integrated navigation system developed. After obtaining the initial latitude and longitude, the device achieves self-alignment by sensing the Earth's rotational angular velocity for north-seeking.

The product features a titanium alloy pressure-resistant housing and integrates a high-performance phased array DVL and a high resolution pressure sensor module. It supports combined positioning with DVL, GPS, and USBL, and outputs attitude, position, velocity, and depth information. With a standard pressure-resistant housing, it can be directly used for underwater navigation of AUVs/ROVs without any modifications.

The NAVS-3000 integrated navigation system employs an improved IMU solution and data fusion method, significantly enhancing the accuracy of attitude and heading. When combined with DVL, the navigation accuracy reaches 0.5% of the distance traveled under straight-line conditions, and 0.1% of the distance traveled during area mapping missions. The depth sensor has a resolution of 0.0005% of the full range and an accuracy of 0.05% of the full range.

2. TECHNICAL SPECIFICATIONS

2.1.Technical Specifications

SPECIFICATIONS	
Dimensions	Max. diameter: 193 mm, height: 277 mm
Weight in air	14.2 kg
Max. operating depth	3000 m
External sensor support	GPS (NMEA0183)/USBL position system
Depth sensor accuracy	±0.05% of full scale
Depth sensor resolution	0.0005% of full scale (1.5 cm at 3000 m)
Attitude accuracy	Pitch/roll: 0.03° (RMSE)
Heading accuracy (moored, no DVL/GPS)	0.25° (RMSE)
Heading accuracy (INS/DVL)	0.25° (RMSE)
Travel distance error (Z-shaped survey)	≤0.1% of distance
Travel distance error (straight line)	≤0.5% of distance
Power supply	24 V ±1 V

2.2. Performance Parameters

Key Features:

- (1) Compact size, high accuracy, autonomous north-seeking, immune to magnetic interference.
- (2) Straight-line navigation accuracy: \leq 0.5% of distance; Z-shaped survey pattern accuracy: \leq 0.1%.
- (3) Integrated high-resolution pressure sensor, 3000 m depth-rated version with 1.5 cm resolution.
- (4) Phased array DVL, navigation accuracy unaffected by sound speed variations.
- (5) Automatically switches to water-track mode when bottom-track is lost in deep water.
- (6) Supports USBL position aiding with automatic outlier rejection.
- (7) Built-in Wi-Fi module for configuration and data access.

2.3. Mechanical Dimensions

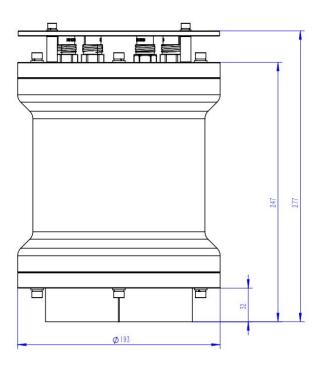


Figure 2.3.1 Side View

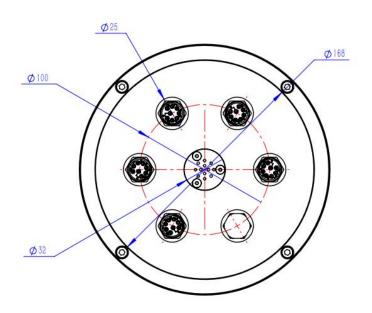


Figure 2.3.2 Top View

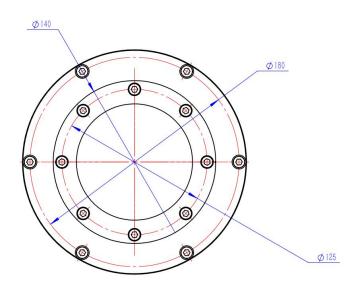


Figure 2.3.3 Bottom View

2.4. Connector & Pin Definition

Table2.4 Connector Definition

Connector	Pin Function
1. User Port 1	1. Power +24 V
	2. Power GND
	3. User UART1 RS232 TX (INS out) / RS422 TX+
	4. User UART1 RS232 RX (INS in) / RS422 RX+
	5. UART1 RS422 TX-
	6. UART1 RS422 RX-
	7. GPS RS485 RX+
	8. GPS RS485 RX-
2. User Port 2	1. Power +24 V
	2. Power GND
	3. User UART2 RS232 TX (INS out) / RS422 TX+
	4. User UART2 RS232 RX (INS in) / RS422 RX+
	5. UART2 RS422 TX-
	6. UART2 RS422 RX-
	7. GPS RS485 RX+
	8. GPS RS485 RX-
3. Ethernet & Sync	1. Power output +24 V
	2. Power output GND
	3. PPS2 RS485 TX+
	4. PPS2 RS485 TX-
	5. Ethernet TX+
	6. Ethernet TX-
	7. Ethernet RX+
	8. Ethernet RX-
4. PPS Port	1. Power output +24 V
	2. Power output GND
	3. GPS RS485 RX+
	4. GPS RS485 RX-
	5. PPS1 RS485 RX+ (GPS PPS in)
	6. PPS1 RS485 RX- (GPS PPS in)
	7. PPS1 RS485 TX+
	8. PPS1 RS485 TX
5. Acoustic Communication Extension	1. Switched power output +24 V
	2. Switched power output GND
	3. UART3 RS232 TX (INS out) / RS422 TX+
	4. UART3 RS232 RX (INS in) / RS422 RX+
	5. UART3 RS422 TX-
	6. UART3 RS422 RX-
	7. PPS3 RS485 TX+
	8. PPS3 RS485 TX-

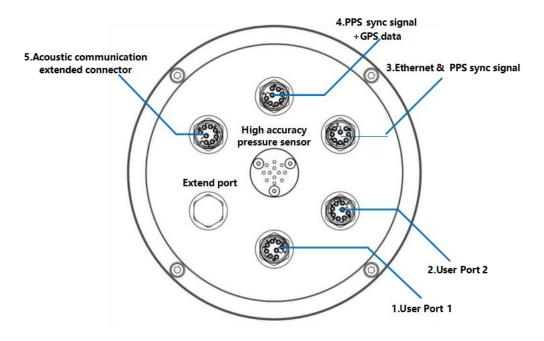


Figure 2.4 Connector Definition

3. BASIC FUNCTIONS

SINS/DVL/GPS/Depth Sensor Integrated Navigation Mode

- (1) This is the default operating mode of the system.
- (2) When GPS velocity data are valid, the SINS integrates with GPS.
- (3) When GPS is invalid, SINS integrates with depth sensor and DVL. If both water-track and bottom-track are valid, bottom-track velocity is used. In deep water, if only water-track is available, SINS integrates with water-track velocity.
- (4) If both DVL and GPS are invalid, the system enters vertical gyromode: velocity is zeroed, but accurate attitude is maintained.
- (5) When valid USBL position is received, outliers are automatically rejected and navigation error is corrected.

4. TEST REPORT

4.1. Trajectory Comparison

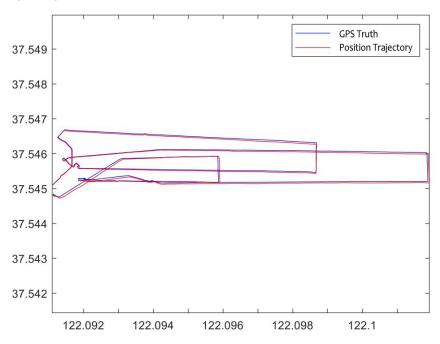


Figure 4.1.1 Comparison of Integrated Navigation Position Trajectory and GPS Truth

4.2. Error Analysis 8 Lon Pos Err at Pos Err 6 4 2 Ε 0 -2 -4 -6 -8 2 0 3 5 6 7 8 9 Time (0.01s) $\times 10^{5}\,$

Figure 4.1.2 Position Error (Total Time $\approx 9000 \text{ s}$)

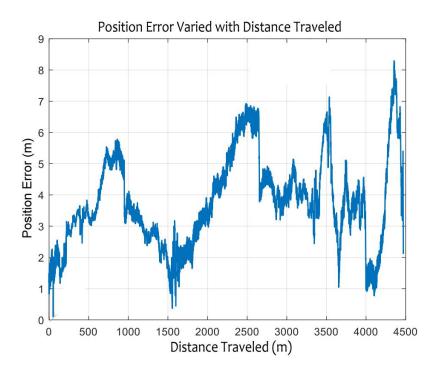


Figure 4.1.3 Position Error vs. Distance Traveled

Over the $4.47~\rm km$ mission, the system drifted no more than $8.3~\rm m$ at any point and averaged only $3.8~\rm m$, achieving $0.085~\rm \%$ travel distance error on reciprocal legs and $0.38~\rm \%$ travel distance error on the initial $824~\rm m$ straight segment.

